by Sondra Turjeman

Most of us have heard of MOOCs – massive open online courses – and many of us have probably even started a few. But how many of us have completed every MOOC we’ve begun? I for one, have not, and I know I’m not the minority. Different estimates of MOOC completion across platforms (e.g. Coursera, edX), universities, and course types hover around the 10% mark. Some estimates suggest that as few as 3% of registered participants finish MOOCs.

But MOOCs can be very valuable; they cover a range of subjects at various levels and are often accessible to students with little background knowledge, providing an entry point into new fields and a way to gain important tools. Take, for example, a graduate student in the biological sciences. He has worked very hard in the lab to collect a large set of data, but now he needs a particular tool or robust and efficient method to analyze his dataset. While a relevant course may be offered in the computer sciences department of his university, there is likely a math and programming pre-requisites. Taking a MOOC, if he follows through with it, can provide the student with the skillset he needs to best analyze his data without diving too deep into the underlying theory.

This is where Dr. Dafna Shahaf of the Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University of Jerusalem comes in. She has built a CIDR-sponsored university course based on available MOOCs for beginners in data science from all disciplines: Self-paced introduction to data science (67876). Shahaf and the course’s two teaching assistants Ms. Moran Mizrahi and Mr. Ronen Tamari work with the enrolled students to find MOOCs that answer their data processing and analysis needs, allowing them a personalized entry-point into data science. Then, each week, the students sit together and work through their courses, asking for help from TAs along the way. Students with overlapping course content discuss their projects and make the often lonely MOOC experience much more interactive.

While the course is not currently offered for credit hours, there are already more than 10 participants from a range of fields including the Dept. of Cognitive Sciences, the Dept. of Political Science, the School of Pharmacy, the Faculty of Medicine, and the Institute of Life Sciences. Students dedicate a minimum of four hours per week to their MOOCs – two hours in class, and two hours on their own – submitting progress reports each week to help keep them on track. And although it is a new offering, feedback has been very positive, notes TA Mizrahi who sees students consistently progressing and positively interacting with both the material and one another.

Nir Kosti, a PhD student in the Dept. of Political Science is taking a natural language processing (NLP) MOOC, and even though it has just begun, he is already using what he’s learned in his research. With his advisor, Prof. David Levi-Faur, Kosti examines the legislative and regulatory productivity of Israel and the United Kingdom, and more specifically, the co-production and relationships between primary and secondary legislation in the two countries from 1948-2018. To that end, he must analyze large quantities of laws and regulations, and aims to use NLP to streamline and optimize the process. When asked why he joined this class, even though it is offered at a different campus and doesn’t give him credit hours, he mentioned the word “accountability” several times.  It is a platform that not only gives him the space to read and to learn but compels him to keep up with the learning process, even when the payoff seems distant. This integrated classroom-MOOC format provides the extra push many students need both in terms of motivation and in terms of resources for understanding course content.  If you would like to join, keep an eye out for the second semester offering at the Har Hatzofim campus or be in touch with Dr. Dafna Shahaf.

Infer, filter and enhance topological signals in single-cell data using spectral template matching

Single-cell RNA sequencing is a powerful technology that allows researchers to analyze gene expression in individual cells, providing insights into cellular processes and functions. However, analyzing this data can be challenging, as cells can simultaneously encode multiple, potentially cross-interfering, biological signals. A new computational method, scPrisma, was developed to address this challenge. scPrisma has the ability to uncover cellular spatiotemporal context and has the potential to drive further insights into cellular processes and functions, ultimately advancing our understanding of biology.

Read More

התנהגות שיחור מזון חברתית – מעבדת האקולוגיה של התנועה של פרופ' רן נתן

עטלף הפירות המצרי משחק תפקיד מפתח בהפצת זרעים של מגוון צמחים, לרבות מינים פולשניים. עטלפי פירות ידועים בתור מין חברתי ביותר, אולם דפוסי שיחור המזון שלהם נותרו עד היום בגדר תעלומה, וכך גם ההתנהגויות החברתיות הנלוות לאותם דפוסים. חוקרים מקווים לשנות את כל זה באמצעות שימוש במכשירים איתור-מיקום ממוזערים ברזולוציה גובהה, שהוצמדו לאוכלוסיית עטלפים גדולה (כמעט מושבה שלמה) לצורך איסוף נתונים מדויקים על הרגלי התעופה, ההפצה והניווט שלהם. ניתוח הנתונים בראי תורת הגרפים יאפשר, כך מאמינים החוקרים, לחשוף את הרשת החברתית הפועלת מאחורי ההתנהגות המסתורית של העטלפים ולהגיע לתובנות משמעותיות שלא היו נגישות עד כה. כדי לדעת עוד, המשיכו לקרוא או בקרו באתר המעבדה ל אקולוגיה של התנועה (אנגלית).

Read More

הפריה חוץ־גופית: הערכת איכות עוברים לפני החזרתם לרחם – מעבדת בוקסבוים למכאנוביולוגיה תאית וביופיסיקה של תאי גזע וגרעינים

לפחות אחד מתוך 25 תינוקות בישראל הוא תינוק מבחנה, אך עדיין אין ברשותנו אמצעים מדויקים להערכת איכות העובר טרם השתלת הביצית המופרית ברחם. לכן, מקובל להשתיל מספר עוברים על מנת להגדיל את סיכויי לקליטת היריון מוצלח, אולם כתוצאה מכך גדל גם הסיכוי להריון מרובה עוברים. מטרת הפרויקט הנוכחי היא לצפות מראש לאילו עוברים הסיכוי הטוב ביותר להוביל להריון מוצלח עוד בטרם השתלתם ברחם, באמצעות ניתוח מאגר נתונים של למעלה מ-70,000 עוברים. למידע נוסף, המשיכו לקרוא כאן, או בקרו באתר מעבדת בוקסבוים ובמאגר Nanshe Database.